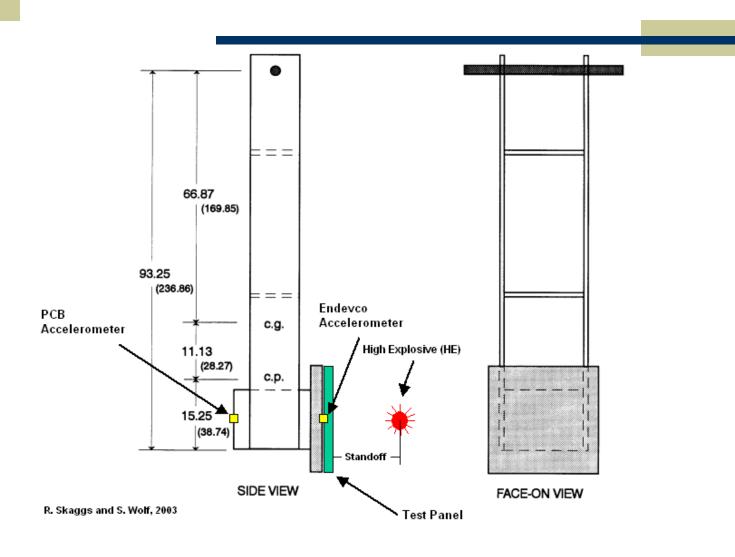
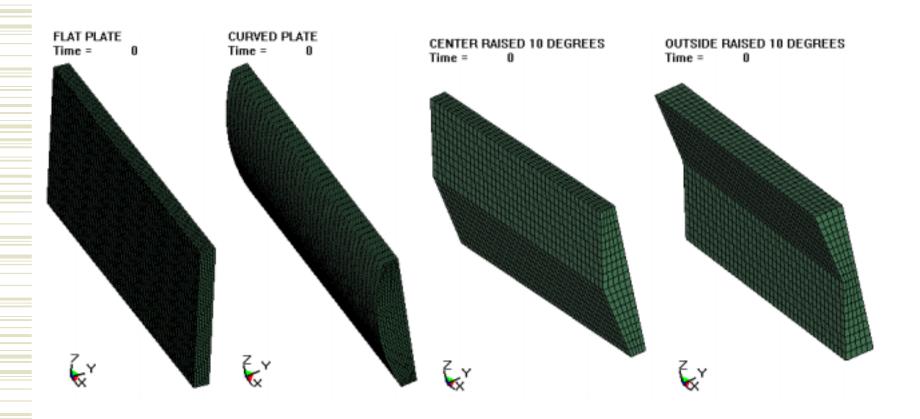
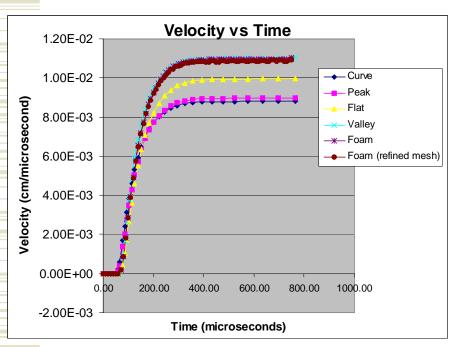

Arbitrary Lagrangian Eulerian Coupling Techniques in Blast Modeling

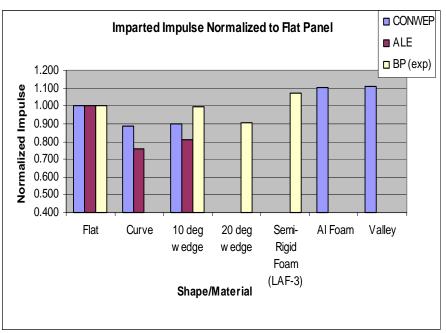


Presented By: Michael Mullin


Motivation

- Energy absorbing materials need to be investigated.
- ALE offers more accurate capabilities.
- Compare results to models using CONWEP.

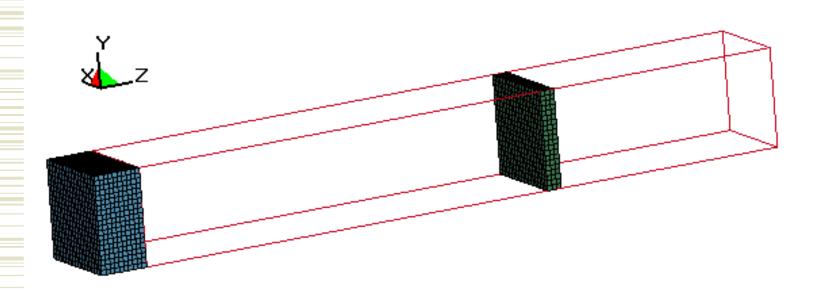

Ballistic Pendulum



Previous Studies: Sled Shapes

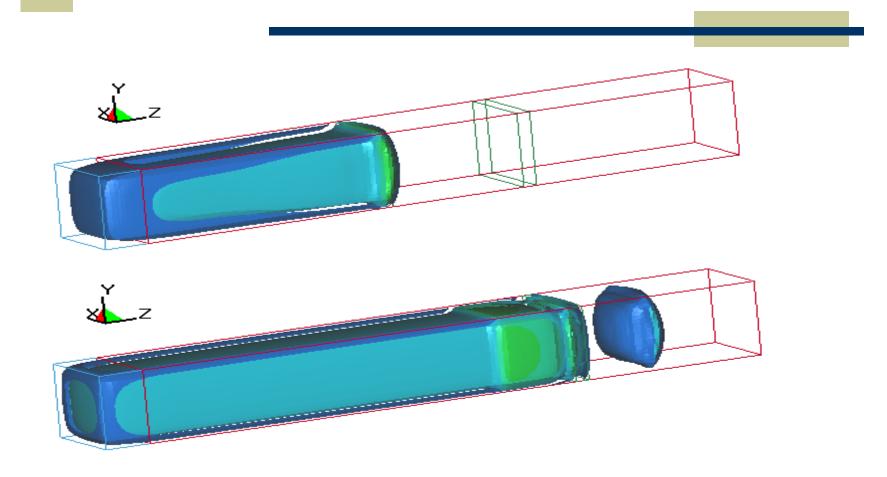
Previous Studies: Results

 Results from previous CONWEP and ALE parametric studies compared to experiment results.


Long Term Objectives

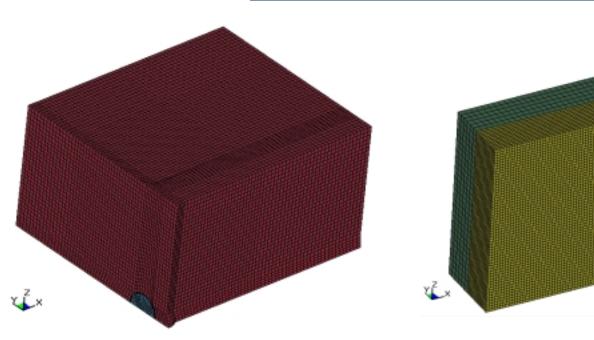
- Effectively simulate blast phenomenon.
- Know the difference between CONWEP and ALE techniques and when each are appropriate.
- Optimize Al foam parameters to mitigate blast damage.

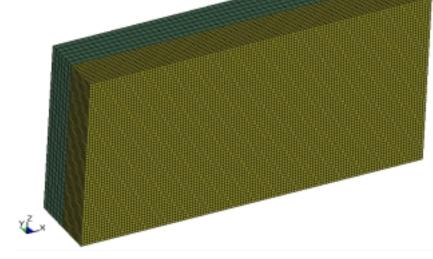
Project Objectives


- Create a model that simulates fluid structure interaction.
- Learn the required input cards associated with ALE and the effect each parameter plays on the model.
- Be able to compare steady state velocity of the foam panel against previous tests.

Practice Model

- 60,000 Eulerian elements
- 396 Lagrangian


Practice Model cont.


Important Cards

	NTROL_TIM	_						
		+2						
ş	DTINIT	TSSFAC	ISDO	ISLIMI	DIZMS	LCTM	ERODE	MSIST
	0.0	0.25						
ş								
Ş 								
	NTROL_ALE		_					
Ş —-	+1	+2	+3	+4	+5	+6	+7	+8
\$	DCT	NADV	METH	AFAC	BFAC	CFAC	DFAC	EFAC
	3	1	2	-1				
\$	START	END	AAFAC	VFACT	PRIT	EBC	PREF	NSIDEBC
							0.10132	
\$								
\$								
*C0	ONSTRAINED	LAGRANGE	IN SOLID					
		_ +2	_	+4	+5	+6	+7	+8
\$	SLAVE	MASTER	SSTYP	MSTYP	NQUAD	CTYPE	DIREC	MCOUP
	3	1	1	1	- 4	5	3	0
\$	START	END	PFAC	FRIC	FRCMIN	NORM	NORMTYP	DAMP
'	0.0		0.25		0.0			
ş	CQ			ILEAK		LCIDPOR		
۳	0.0		0.0	1	IDLAN	BOIDFOR		
	0.0	0.0	0.0	1				

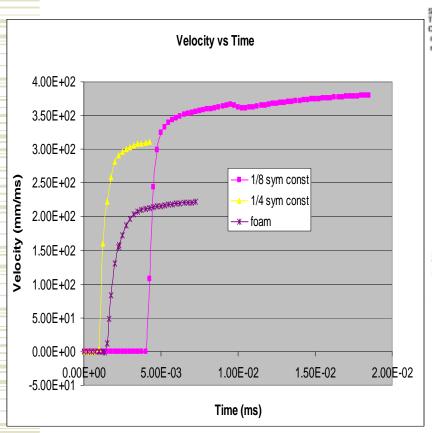
Foam Model

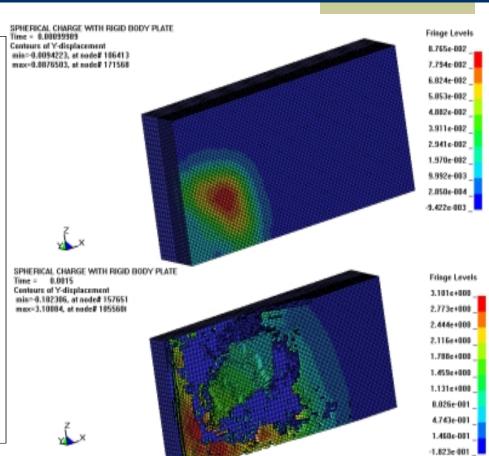
- 106,190 Air Elements
- 608 HE Elements

- 86,400 Al Foam Elements
- ◆ 10,800 Rigid Body Elements

Important Cards

```
*CONTROL TIME STEP
             TSSFAC
                        ISDO
   DTINIT
                                TSLIMT
                                           DT2MS
                                                              ERODE
      0.0
               0.10
*CONTROL ALE
      DCT
              NADV
                                  AFAC
                                            BFAC
                                                     CFAC
                        METH
                                -1.0
                  1
    START
               END
                       AAFAC VFACT
                                            PRIT
                                                      EBC
                                                               PREF
                                                                      NSIDEBO
                                                            0.10132
*CONSTRAINED LAGRANGE IN SOLID
    SLAVE
             MASTER
                       SSTYP
                                 MSTYP
                                           NQUAD
                                                    CTYPE
                                                              DIREC
                                                                        MCOUP
       22
                  1
                           0
                                     1
                                                                            0
    START
                END
                        PFAC
                                  FRIC
                                          FRCMIN
                                                     NORM
                                                            NORMTYP
                                                                         DAMP
      0.0
             1.0E10
                        0.30
                                             0.0
               HMIN
                        HMAX
                                 ILEAK
                                         PLEAK
      CO
                                                  LCIDPOR
      0.0
               0.0
                        0.0
                                     1
*SET PART LIST
      SID
       22
               PID2
     PID1
        3
```


Important Cards


	ction_sol	_						
-			+3	+4	+5	+6	+7	+8
\$	SECID	ELFORM	AET					
ş	6 AFAC	1	CEAC	DEAC	CTADT	END	3 3 F 3 C	
٩	AFAC	BFAC	CFAC	DFAC	START	END	AAFAC	
ş								
*MA	T_ADD_ERO	SION						
\$	-+1	+2	+3	+4	+5	+6	+7	+8
\$	MID	EXCL						
	4							
\$	PFAIL	SIGP1	SIGVM	EPSP1	EPSSH	SIGTH	IMPULSE	FAILTM
		100		1.15				
\$								
			TO_SURFACE					
\$	-+1	+2	+3	+4	+5	+6	+7	+8
Ş	SSID	MSID	SSTYP	MSTYP	SBOXID	MBOXID	SPR	MPR
	2	1	0	0				
\$	FS	FD	DC	VC	VDC	PENCHK	BT	DT
\$	SFS	SFM	SST	MST	SFST	SFMT	FSF	VSF

Results

- Successfully coupled Lagragian and Eulerian parts.
- Preliminary models show foam as effective for reducing imparted impulse compared to a similar model with a rigid body flat panel.

Results

Conclusion

- Techniques for ALE are set, now to make the models more accurate.
- Air mesh needs to be improved.
- Material and EOS parameters need to be scrutinized.
- Need to examine erosion criteria more closely.

Future Work

- Concentrate on material and EOS parameters.
- Examine effect of erosion criteria.
- Construct an improved air mesh.
- Compare ALE models with CONWEP models and experiments
- Perform an optimization study on Al foam material properties to minimize the imparted impulse.